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ABSTRACT

In PAC(Probably Approximately Correct) theory, it is posited that larger hypoth-
esis spaces necessitate more independently and identically distributed (i.i.d) data
to maintain the accuracy of model performance. PAC-MDP theory defines curios-
ity by assigning higher rewards for visiting states that are far from the previously
visited trajectory, which supports more independent and i.i.d data collection. Re-
cently, this field has witnessed attempts to narrow the hypothesis space by devel-
oping additional mechanisms that train multiple skills and facilitate the sharing
of information among them, thereby discovering commonalities. However, one
might wonder: What if curiosity could not only enhance the efficiency of data
collection but also significantly reduce the hypothesis space, thereby driving op-
timal outcomes independently without additional mechanism used in PAC-MDP?
Within this context, contrastive multi-skill reinforcement learning (RL) exhibits
both traits. Previous research in contrastive multi-skill RL has utilized this tech-
nique primarily as a form of pretraining, However, there has been scant investiga-
tion into whether the technique itself can reduce the hypothesis space to optimize
the outcomes. We have mathematically proven that curiosity provides bounds to
guarantee optimality in contrastive multi-skill reinforcement learning (RL). Ad-
ditionally, we have leveraged these findings to develop an algorithm that is ap-
plicable in real-world scenarios, which has been demonstrated to surpass other
prominent algorithms. Furthermore, our experiments have shown that different
skills are actually reducing the hypothesis space of the policy by being hierarchi-
cally grouped.

1 INTRODUCTION

We have inherently evolved to possess curiosity, driving us to seek out and learn from areas of high
uncertainty. This natural inclination enhances our intelligence by continually pushing the boundaries
of our knowledge. In the realm of machine learning, this trait is mirrored in methodologies like
Active Learning and the PAC-MDP (Probably Approximately Correct - Markov Decision Process),
which strategically navigate uncertainty to boost learning efficiency. This focus not only accelerates
learning processes but also ensures that model target the most valuable information, optimizing
intelligence enhancement across diverse environments. (Auer et al., 2002; Raj & Bach, 2022).

‘We propose that humans instinctively adhere to general biases, consistent with the principle of mini-
mal description length (Griinwald, 2007), and we underscore the efficacy of modularizing common-
alities. Similarly, the PAC-MDP framework enhances reinforcement learning by offering theoretical
guarantees, such as upper bounds of the necessary sample size to approximate the optimal policy.
These bounds are crucial for minimizing the hypothesis space—the set of all possible policies an
algorithm might consider—thereby ensuring more precise and predictable outcomes with reduced
sample complexity.

However, unlike deliberate efforts to reduce the hypothesis space, we aim to discuss how curiosity
itself serves as a process of reducing the hypothesis space. In this paper, we propose a novel rein-
terpretation of curiosity and, building upon this new understanding, we adapt the information gain
formula typically employed in contrastive multi-skill reinforcement learning. This adaptation con-
tributes to the autonomous optimization of the hypothesis space. This research demonstrates how
skills self-categorize and inherently structure themselves into tree-like formations, effectively min-
imizing the hypothesis space. Finally, we present a practical modification of our algorithm, which
we show surpasses the performance of existing algorithms.
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Our contributions are summarized as follows:

* We have established a bound that guarantees optimality purely from curiosity in an unsu-
pervised learning environment.

* We have adapted unsupervised learning algorithms, previously limited to finite state MDPs
with optimality guarantees, to create algorithms that operate effectively in continuous state
MDPs.

* Designing a contrastive space where skill itself serves as a dimension, allowing for non-
parametric embedding among them.

* Revealing that skills, grouped hierarchically by shared traits, form coherent concepts.

2 RELATED WORK

Accelerating PAC-MDP with Hypothesis Space Re-
duction Previous research has successfully leveraged the
observation that different policies trained to solve vari-
ous tasks share common features. This method is akin to
meta-reinforcement learning (meta-RL), where the avail-
able space for each policy is effectively reduced. In par-
ticular, it is assumed that different MDPs share benefi-
cial options, a concept explored within the framework
of Semi-Markov Decision Processes (SMDP) (Brunskill
& Li, 2014). Further research has focused on grouping
tasks that share the same MDP (Brunskill & Li, 2013),
utilizing the best initialization from previous experiences
to reshape rewards and accelerate task performance (Chu
et al., 2021; Abel et al., 2018), and concurrently training
multiple agents to solve their respective tasks while shar-
ing information to accelerate each other’s learning (Liu
et al., 2016; Zhang & Wang, 2021; Sun et al., 2020; Di-

Figure 1: The result of training 32

makopoulou & Van Roy, 2018; Guo & Brunskill, 2015).

Unsupervised Skill Discovery The problem mode col-
lapse is the issue where the vastness of the search space
leads to insufficient exploration (Lee et al., 2020). Nu-
merous efforts have been made to address this issue. For
example, some RL focuses on states where the results
differ from our predictions (Berseth et al., 2020; Pathak
et al., 2017; 2019; Burda et al., 2019). However, this ap-
proach can cause the model to oscillate and become un-
stable, akin to the “noisy TV” problem. To address such
complex challenges, several methodologies have been de-

skills contrastively using the algorithm
we proposed shows that by making the
policy itself a dimension and allowing
the policies to embed each other non-
parametrically, the skills autonomously
organize into hierarchical groups. This
organization is based solely on informa-
tion gain, without the need for exter-
nal rewards, and leads to an optimality
guarantee within a specified confidence
bound.

veloped, including Hierarchical Reinforcement Learning

(Levy et al., 2019; Vezhnevets et al., 2020), which strate-

gically divides tasks into manageable subtasks. Furthermore, several approaches have been devel-
oped to train multiple skills, ensuring that when a new skill is autonomously acquired, it remains
clearly distinct from previously learned skills. VIC (Gregor & Danilo Jimenez Rezende, 2016) in-
volves training multiple policies simultaneously and subsequently ensuring that they diverge from
each other. However, because it learned both the distribution of skills and the distribution of states
simultaneously, the mode collapse problem still occurred. Subsequently, DIAYN (Eysenbach et al.,
2019)and VALOR (Achiam et al., 2018) sought better exploration by fixing the distribution of skills
and adding an entropy term to the skills. To avoid mode collapse and achieve better exploration,
some approaches modified mutual information formula from backward to forward, artificially re-
warding the model to spread the state distribution as widely as possible during learning (Lee et al.,
2020; Campos et al., 2020; Sharma et al., 2020). APT (Liu & Abbeel, 2021b), APS (Liu & Abbeel,
2021a) and CIC (Laskin et al., 2022) aimed to find more optimized patterns not by increasing state
coverage but by simultaneously learning state embeddings during the feature training process and
maximizing the distribution of the embedded space. In APS (Liu & Abbeel, 2021a) and CIC (Laskin
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et al., 2022), they maximized the state entropy by separately defining the discriminator term and the
exploration term, making them come from different mechanism. Recently, algorithms have been
developed that offer improved performance in environments where the optimal path to a given state
is provided METRA (Seohong Park & Levine, 2024).

Optimality in Contrastive learning The following two studies are most closely related to our re-
search, as our mechanism addresses optimality with respect to any reward function. In the study
referenced in (Eysenbach et al., 2022), in a finite-state MDP environment, researchers demonstrated
that maximizing information gain in skills yields optimal results for some reward function by al-
locating the skill distribution in its vertex of feasible set. Similarly, the paper (Mutti et al., 2022)
demonstrated that by using Rényi divergence in a finite state MDP to create maximally diverse
skills, ensuring that the distance between any skill and a set of specific skills remains below a de-
fined threshold, thereby cumulatively enabling the establishment of a performance bound between
the optimal policy and the learned policies. This study locates skills at the vertices of the feasible set
within a continuous state, continuous action environment. Simultaneously, it establishes a boundary
condition ensuring that the distance between any given skill and those skills developed through our
learning process remains below a certain threshold.

3 PRELIMINARIES

3.1 CONTRASTIVE SPACE

Consider the spaces S = R™ and Z = R*. Let (S, d) denote a metric space where the distance d
between any two points x1,x2 € S is defined as follows:

d(wy,72) = |lz1 — 22|

Define a projection function ¢ : S — Z, where Z represents the contrastive space. The contrastive
space is conceptualized such that the dimensions can embody policies.

The distance between two projected points y; and ys in Z, corresponding to the original points x;
and z9, is given by the Euclidean distance in R*:

dz(y1,y2) = [[P(z1) — ()|l

where y; = 1 (1) and y2 = ¢(22).

Let Z be the set of skills and T' the set of trajectories. Let B denote the dimensional bandwidth,
which serves as an indicator of confidence, representing how confidently a skill is positioned within
a certain state. We define 1 as follows, where ¢ and j are elements of Z:

T d(“"j,t/w"‘i,r,)2 ip - .
Y (sit)j = T = P (7T) iti7#J,
’ 1 ifi = 7.

3.2 PERFORMANCE MEASUREMENT IN MARKOV DECISION PROCESSES

In this study, we conduct experiments across a variety of MDP environments, each characterized
by a unique set of reward functions. To accommodate the complexity of these environments, we
employ a Multi-Objective Markov Decision Process (MOMDP), formally defined as tuple M :=
(8, A, P,R,v). Unlike a standard MDP, where R represents the reward function, in a MOMDP,
R consists of multiple reward functions corresponding to different objectives. The elements of the
MOMDP are mathematically described as follows:

* States S: An infinite and bounded set of states, where s € S represents an individual state
from the set of states.

* Actions A: An infinite and bounded set of actions available to the agent, defining possible
movements that can be taken in each state. where a € A represents an individual action
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from the set of actions. drawn as a; ~ mg(a¢|s:; z) + € at each time step t with learnable
policy 7 with parameter 6 , with Gaussian noise ¢ influencing the outcome.

* Transition Probabilities P: The transition model P : S x A — A(S) defines the system
dynamics, where the subsequent state s is probabilistically determined according to the
distribution P(- | s, a) given the current state s and action a.

* Discount Factor : A discount factor, v € [0,1), used to decrease the value of future
rewards, reflecting the preference for immediate rewards over distant ones.

* Set of the Reward Functions R: We define set of state dependent objective function
O ={0| O :8 — R}, and set of the reward function R = {R | R : S x S —
R}, where R = (R1, Ra,...,Rjz) and each R, : & X § — [~Rmax, Rmax]. Here,
R.(524,82041) = Oz(82441) — O5(82,4), and Ry represents the maximum value that
any reward function can take.

Given that the space contains infinitely many states, we modeled the state distribution p induced by
policy 7, ¢ as a Gaussian Mixture Distribution. Instead of determining the state distribution based
on the visitation frequency for each state, we assumed a Gaussian distribution centered at each state
to estimate the state distribution effectively. It can be expressed as:

1 Z
pzo(x) = T ZN(x\Sz,uC - E).
t=0

In this context, C denotes a variance small enough that the distribution closely approximates a point
distribution. where E is the identity matrix. The covariance matrix is then given by C' - E. In this
configuration, each mean s, is located at a point along the trajectory generated by the policy.

Without loss of generity, we put O,(s, ) as 0. We define the performance measure Jy(z), where
the discounted reward R’ (s, ¢, 5, 1+1) at time ¢ is given by v* R(s, ¢, 2 1+1), as follows:

T
Jo(2) =E™ | Y v R(5:24,52041) (1)
t=1
T
=E" [Z VtOz(Sz,t+l) - 7t02(5Z7t)] (2)
t=1
1 T T—1
= 7Eﬂ. Z rytOz(Sz,t) — Eﬂ- Z 'ytOz(SZ7t)‘| (3)
t=1 t=0
1—~ T—1 AT
= ;Eﬂ' tOz . + Oz ; 4
y ;7 (s20) + 7 (S7T)] )
T T
=E" lz Y(#)Ox(s21) | =E7 Z O/Z(sz,t)] (5)
t=1 t=1

Since O’ is derived by applying a discount factor to O, it respects T'Ryax as an upper bound.

4 CONCEPT BLOCK

4.1 COVERING OPTIMAL POLICY SPACE WITH MINIMAL HYPOTHESIS SPACE

We initially define the objective function set O* and the set of optimal policies, denoted by Z* =
{710+, T2,0, ..., 7|6+ }> Wwhere 0 specifies the parameters that optimize each policy within the
set. such that, regardless of the specific optimal policy introduced, The performance difference with
any given policy is bounded by a certain threshold, with the objective of constructing a minimal
hypothesis space §* € ©.
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Definition 4.1. (Separating objective function set) Define a separating objective function set O*
consisting of |Z| objective functions O, each tailored to a specific policy z in Z. These reward
functions are selected to maximize the minimum performance differences between each policy z € Z
and all other policies z' € Z, 2’ # z. More precisely,

02 = argmax_ min_ [Escslizo(2)OL(@)] ~ Exesliz () OL(@)].

Definition 4.2. (Optimal policy set) For each skill z and for each separating objective function set
O, denote the minimum performance difference achieved as (,, given by:

G = i [Bacs[izo(@)O2(w)] ~ Euesliz (@) 02 (@),

Consider the set of these minimum performance differences:
CZ:{CZZZEZ}‘

The concept of a optimal skill set Z* generated by g+ is having a maximized set of performance
differences (7.

0" = arglgleag]E[CZ(Q) 1z € Z].

The optimal policy derived in this manner possesses the following density property:

Theorem 4.1. (Density property) The value of (7~ for an optimal policy set Z* does not increase
upon adding another optimal policy z|z| 11 to the set Z*.

[To(2) = Jo= (2)| < |Ja(2) = Jo(2')]

As seen in Equation (1) of Chapter 3 in the work by (Mutti et al., 2022), the problem of finding the
optimal policy set as defined above is equivalent to the set cover problem and is known to be NP-
hard (Feige, 1998). In the next chapter, we will introduce strategic approaches for asymptotically
solving this problem.

4.2 CONVEX OPTIMIZATION AND INFORMATION GAIN

As we mentioned previously, maximizing the performance between every pair of policies, repre-
sented by (z«, is a challenging endeavor. Since each skill always attains the maximum value along
the axis it represents in contrastive space, we first maximize their distance from the mean in the
contrastive space as an approach to approximating a solution to this problem:

1
max Z Yp(wi) — @ Z ¥p(x;) (©)

i€Sy, JES:

However, directly maximizing the difference in distributions does not always place policies on the
vertex of the policy space’s convex set, but they also assign them within the interior of the set as
shown in Figure 3 (left).

Consider the following scenario: Suppose there are four distinct skills. We analyze their positioning
within a contrastive space in two different cases:

* Case1:
— Skills are positioned as: (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1).
— The minimum distance between any two skills is 2.
— The average distance across all pairs is also 2.
* Case 2:
— Skills are positioned as: (1,0.1,0.1,1), (0.1,1,1,0.1), (1,0.1,1,0.1), (0.1, 1,0.1, 1).
— The shortest distance between two skills is reduced to 1.8.
— The average distance between pairs increases to 3.
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As can be seen in this case, efforts to increase
the average distance across all pairs may hin-
der efforts to increase the minimum distance
between any two skills.

To avoid this problem, we utilized Principle
Lemma 6.1 from the MISL (Eysenbach et al.,
2022) to optimize the allocation of policies
within the vertices of the policy space. We can
interpret each of the normalized | Z| dimensions
in the contrastive space as state occupancy mea-
sures of |Z| state MDPs. Additionally, the re-
ward function in each finite state MDP can be
understood as a linear combination of the axes
in |Z|-dimensional space.

Z3

,0,0)

]

According to Lemma 6.1 of (Eysenbach et al.,

2022), when the information gain among po]i_ Figure 2: Visualization of the feasible set of pOl-
cies is maximized, the policies are strategically icy in the normalized contr.astive space. Overall
positioned at the vertices of a feasible set within ~space refers to the contrastive space, and each z;
the contrastive space, as described in Figure 2. represents different skills, serving as the axes of
In our analysis, we calculate the information this space. The triangle represents the normalized
gain among policies assuming that each pohcy contrastive space. The shaded area within this tri-
follows a Gaussian distribution. We further as- angle indicates the feasible set of the policy space.
sume that the variance of each distribution is Each point at the vertex of the feasible set repre-
identical and denoted by &, and is sufficiently ~sents different skills z1, 22, 23.

small to be considered as point distributions.

By ensuring that policies are located at these

vertices, we effectively reduce the hypothesis space. This strategic positioning facilitates the iden-
tification of distinct policies, thereby enhancing optimization efforts. As described in the Figure
3
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Figure 3: We created 20 skills represented as blue points and maximized the distances between these
skills. [Left] Maximizing the difference in distribution directly from Formula 6. [Right] Result of
maximizing the information gain E,cz[I(¢5(5); Z) ] where ¢ represents normalized version of
. The average minimum distance E ¢ z[(.] of contrastive representation between each pair is 1.9 for
the left and 2.1 for the right.

Information gain, in this context, is calculated as the average divergence between each skill’s state
distribution and the total state distribution, in a manner similar with the approaches used in previous
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study (Eysenbach et al., 2022).
1(¥5(5);:2). = Drr(E IN(Wn(s20), Ol _E [E N(W5(s20),0)]])

z'eZt'eT

4.3 AN INTUITIVE EXAMINATION AND PERFORMANCE GUARANTEE

We investigated how information gain operates in contrastive space and how it manifests in the
original space. Initially, similar to the existing algorithm, we modified the embedding function in

the information gain from 15 (S) to ¥5(S). to enable faster performance.
Theorem 4.2. (Contrastive space decomposition) The result of the objective function expressed as
E.cz[I(v5(S); Z).] shares the same goal with the function B ,cz[I(v¥p(S5).; Z).].
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Figure 4: Consider the set S containing pairs of skills. [up] The first figure illustrates the in-
formation gain from a third skill at = derived from existing two skills at 0 and 5 denoted as
E.ez[I(¢¥p(S = {0,2,5}).;Z).] is calculated for different dimension bandwidth B. [down]
The second figure illustrates the derivative of the information gain between two skills, denoted as
L E.ez[I(¥p(S = {0,2}).; Z).], where the first skill is at position 0 and the second skill occu-

pies position z [down].
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As we can see, The repulsive force progressively weakens beyond a certain point, and this point
shifts closer to the origin as the bandwidth of the dimension decreases, as shown in Figure 4[down].
Information gain reaches its maximum at the extremes, O and 5, but as the dimension bandwidth
decreases below a certain level, it starts to peak in the middle in Figure 4[up].

Consider a skill occupying z3 located on the line segment connecting two skills , each occupying x1
and zo. The Information Gain by locating additional skill to x3 exhibits the following properties:

1. As the dimensional bandwidth converges to zero, the skills tend to distribute themselves as
equally as possible.

2. When the distance between x; and x5, denoted as d(z1, x2), is less than a threshold A, the
divergence reaches its minimum at the midpoint of the line segment between x; and x5,
and its maximum at the endpoints x; and 5.

3. When d(z1,x2) > A, a concave region begins to emerge at the midpoint between x; and
To.

Theorem 4.3. (Branching) If the distance between two skills, each occupying a distinct point,
exceeds a certain threshold, another skill can be inserted between them such that the information
gain of the added skill begins to maximize at the midpoint illustrated in Figure 4. This threshold \
can be defined as B as follows:
Givenz =2, 0 B (1(0n(S = {0,2.0}).:2).] =0
venr = —, —— = x 5 74).] =
2" d?xw zez B T

when B = )\2.

Now, we consolidates the results of the algorithm’s development and derives the performance bounds
based on the preceding discussions. Since the policy space cannot be directly measured, our ap-
proach differs from existing PAC-MDP studies in that we do not define the bound based on the
number of episodes. Instead, given a specific dimensional bandwidth, we provide a performance
bound by demonstrating that the space can be covered with a finite number of policies correspond-
ing to that bandwidth.

and based on Theorem 4.1, 4.3, we can derive the general performance bound as follows:

Theorem 4.4. (B-optimality) It is always possible to identify a policy within our optimal policy set
such that the performance difference between existing policy and any another optimal policy is less
than the maximum performance differences observed among our policies.

B
Jo(2) — Jo=(2)| LT Rpax -\ —-
[Jo(z) = Jo- ()] < TR\ 75
In unbounded states, performance differences can increase in proportion to the step size. However,
in bounded states, the difference in performance does not necessarily grow with T, and the difference
can be expressed using the state size.

4.4 OVERALL MECHANISM

In this chapter, we derive an algorithm that actually works based on the proofs mentioned earlier.
In the previously mentioned MOMDP, the reward function utilized is of an abstract form employed
for theoretical proofs and is not applied in actual training. As we have consistently mentioned, we
optimize global policies by maximizing information gain, which serves as the reward in our unsu-
pervised learning approach. The reward function in unsupervised learning adopts the conventional
assumption that rewards depend solely on the state. This aligns with the foundational models dis-
cussed in prior literature (Eysenbach et al., 2019; Achiam et al., 2018; Lee et al., 2020; Laskin et al.,
2022; Eysenbach et al., 2022). Although the time complexity of the KLD operations between Gaus-
sian mixture distributions infinitely increases as time t progresses, we approximate it using k-NN to
make it feasible in real-world environments.

Theorem 4.5. (Operationalization) The quantification of information gain for each skill within its
respective dimension was accomplished by calculating the KLD between a single Gaussian distri-
bution and a Gaussian mixture distribution. This calculation can be effectively approximated by the
following expression:
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fon() iiNWszm 2 (l"p<(3)>)

ENknn(Sz.t)
In this analysis, Nyny, represents the set of nearest neighbors considered in the computation.

The following outlines the overall mechanism of our algorithm, which we refer to as the “Concept
Block” due to its ability to congregate as needed.

Algorithm 2: Concept Block (CB)

Initialize network 7, dimension Bandwidth B
Set of skils and Initial state Z, s
Initialize replay buffer D
encodes the skill set Z as K
while not converged do
t=0
D+ DU (So)
deploy policys with every skill index at the same time
while ¢ < T do
Ay ~ p(Ay]Se; K) + € where € ~ N(0,02?)
Spr1 =T (S, Ay)
D+ DU (St+1)
end
embed trajactorys S € D in the contrastive space 1/

2

Update 7y to maximize information gain > (1 — exp (f%)) .
SENgnn

(by the result of the Operationalization theory.)

end

5 RESULT AND DISCUSSION

We applied this task to the pathfinding domain and measured the progress of each algorithm over
a limited number of steps. The evaluation metric in this domain can be interpreted as a separating
objective function set, which aims to assign the highest value to a specific policy and the lowest
value to others, as distinctly as possible.

(@) (b) © (d)

Figure 5: We trained the task of finding maximally distinct paths, starting from the origin and ex-
tending in all directions, using contrastive multi-skill reinforcement learning. The closer the agents
get to the center (red dot), the slower their movement becomes. Figures (a), (b), (c), and (d) show
the learning outcomes of DIAYN, DADS, CIC, and CB, respectively.

Since all four algorithms nearly found the optimal path in short episodes, we extended the episode
length, reduced the step size, and set the discount factor below 0.1 to evaluate their performance in
environments more similar to realistic scenarios where the step length exceeds 10,000.

As intended by the original paper, DADS prioritized diversity in state-action pairs over the distribu-
tion of the states themselves. This resulted in overlapping states but led to the generation of many
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Figure 6: The indices of the skills in Figure 5 are encoded as 5-dimensional vectors consisting of -1
and 1. Since the destination of the paths in the existing algorithms is not uniform, we interpolated
these vectors and regenerated the skills based on the extended index. This allowed us to measure
the hypervolume (Zitzler & Thiele, 1999), i.e., the volume of the state space covered by the skills.
Our model CB demonstrated the best performance from start to finish, while CIC initially showed
the next best performance but later declined a bit. DIAYN had the slowest rate of improvement, but
it performed better than CIC.

distinct policies. In contrast, CIC, due to the trade-off between maximizing the entropy term and the
discriminator’s objective, which both aim to diverge early on, failed to discover states behind ob-
stacles. Our algorithm, instead of performing information gain on the states, conducted information
gain on the skills. As a result, the distance between identical states varies depending on the per-
spective of each skill, allowing the algorithm to form a tree structure. This enabled a more uniform
exploration of the space and the generation of optimal paths.

Consequently, we investigate that both the hypothesis space optimization is fundamentally driven
by curiosity which is formulated as information gain. Preliminary findings indicate that curiosity
may play a vital role in achieving optimality. To ensure accurate performance comparisons and to
observe the actual process of concept generation, experiments were conducted in relatively simple
environments.

By treating knowledge as a distinct dimension, which offers a framework for recognizing other
knowledge, we diverge from the traditional approach of utilizing curiosity to reduce the uncertainty
of the entire state, which deter the different knowledge to sharing the same pattern in Contrastive
Multi-Skill RL domain. This method has successfully facilitated the sharing of common patterns
among various knowledge, demonstrating that in our proposed model, maximizing information gain
and hypothesis space compression could be identical.

The hallucination issue observed in image generation or LLMs could be actually a phenomenon that
arises from the inability to cluster and structure patterns effectively, relying instead on a large number
of parameters to train on a case-by-case basis. Hydrogen is the smallest and most fundamental unit
among the molecules that make up the world. The word hydrogen originates from the combination
of two Greek words: ’hydor’ (meaning water) and ’genes’ (meaning to generate). In this way,
rather than having a hierarchical structure, the knowledge we have acquired helps us acquire new
knowledge, and in turn, we use this new knowledge to redefine existing knowledge. Ultimately,
knowledge becomes a new dimension that can encompass other knowledge, As learning progresses,
it becomes increasingly refined and advanced

10
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A PRIOR RESEARCH

Active Learning Active learning has historically leveraged curiosity in various forms to enhance
learning processes. Studies such as (Macedo et al., 2012; Vogl et al., 2019; Schmidhuber, 2007) have
utilized discrepancies between predictions and actual outcomes to fuel the learning mechanisms.
Additionally, the uncertainty-based methods discussed in (Shankaranarayana, 2023; Howard-Jones
& Demetriou, 2009; Zhou & Others, 2020) have been effectively employed to optimize data query-
ing and model training. These methods demonstrate the versatility of curiosity-driven strategies
within active learning paradigms, significantly enhancing both the efficiency and accuracy of model
development.

Hypothesis space reduction Efforts to reduce the hypothesis space in machine learning have led to
significant advancements, including methods like meta-learning (Finn et al., 2016; Chen et al., 2016)
and transfer learning (Pan & Yang, 2010; Yosinski et al., 2014), which consolidate diverse learning
tasks into a unified model framework. Moreover, deep learning integrates extensive parameters to
discern complex patterns, necessitating clarity tools such as Explainable AI (Ribeiro et al., 2016;
Lundberg & Lee, 2017; Selvaraju et al., 2017). Further innovations like Neural Architecture Search
(Zoph & V.Le, 2016), Hyperparameter Optimization (Bergstra & Bengio, 2012), and Automated
Machine Learning (Feurer et al., 2016) continue to refine and optimize the hypothesis space from
the outset.

PAC-MDP The theory of Probably Approximately Correct (PAC) (Valiant, 1984), a pivotal aspect
of information theory, has effectively merged the significant trends of curiosity and hypothesis space
reduction. This integration has shown that decreasing uncertainty across the entire space and nar-
rowing the hypothesis space increase the likelihood of approximating globally optimal values. In
exploring efficient exploration strategies within reinforcement learning, the E3 algorithm (Kearns &
Singh, 1998) emerges as a foundational model, particularly for its method of strategically balancing
known and unknown state explorations. This approach ensures polynomial time complexity in learn-
ing near-optimal policies. Further elaborating on model-based reinforcement learning strategies, the
R-max algorithm (Brafman & Tennenholtz, 2002; Kakade, 2003) is distinguished by its methodol-
ogy, which posits maximal rewards for all unexplored actions. This optimistic initialization facili-
tates effective exploration, enabling the algorithm to offer near-optimal policies within polynomial
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time bounds. MBIE (Strehl & Littman, 2005) improves exploration by using statistical confidence
intervals, allowing the algorithm to adapt its exploration based on the uncertainty in the model. This
approach provides a more refined balance between exploration and exploitation compared to Ryax’S
optimistic initialization. Delayed Q-learning (Delay-Q) (Strehl et al., 2006) enhances exploration
by employing optimistic initialization, like R.x, but introduces a delay mechanism that waits until
enough evidence is gathered before updating state-action values.The model-free nature of Delay-Q
confers significant flexibility, particularly in environments where accurately modeling the dynamics
is either challenging or impractical.

B PROOFS

B.1 PROOFS IN SECTION 4.1

Theorem B.1. (Density property) The value of (7~ for an optimal policy set Z* does not increase
upon adding another optimal policy z|z| 11 to the set Z*.

[76(2) = Jo=(2)] < |Ja(2) — Jo(2)]

Proof. When a new optimal policy, indexed with | Z| + 1, is added, the following two conditions are
satisfied:

1. Each element of the set (- is either maintained or reduced. Since we already have a set
R* that maximizes the value of (z~, modifying this set R+ would result in a lower value
by definition, and even adding new skills would not increase the minimum performance
difference (., which becomes lower. The situation remains the same even if the value of
Rx is not changed.

2. (jz|+1 has alower value than each individual element of the existing set (z. When defining
a new optimal policy, indexed with |Z] 4 1, if the performance difference between this
policy and other policies can be made greater than the existing (z, it implies that one of
the existing skills 7; could have filled the space where the new policy was added, leading
to a higher (z with adjusted objective function R;, which would be a contradiction to the
definition of the optimal policy set.

Therefore, we can say that these optimal policy set Z* is (7« densely cover the optimal policy space.

O

B.2 PROOFS IN SECTION 4.3

Theorem B.2. (Contrastive space decomposition) The result of the objective function expressed as
E.cz[I(v5(S); Z).] shares the same goal with the function E.cz[I(¢p(S5).; Z).].

Proof. This technique, inspired by geometric structures, leverages the fact that the skill parameter
z attains its maximum value along the z axis. By maximizing the information gain of skill z along
this axis, we can strategically position z at the vertex of the feasible set depicted in Fig. 2. O

In this context, we used the simplified version of the Information Gain derived from 4.2 (Contrastive
space decomposition). B denotes the dimension bandwidth, b is defined as %, representing the role
of precision. In the calculation of information gain, the variable §, serving the role of variance
in Gaussian distributions, is initially assumed to be sufficiently small to approximate a point dis-
tribution. Therefore, in this context, we assume that it decreases in the same manner as B. This
embedding is illustrated in the graph shown in Figure 7.

Lemma B.1. (Influence Equality)
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Figure 7: Visualization of how embedding mechanism works. The centers of each component in the

Gaussian Mixture Model are exp( 7(22)2 ),exp( 7(21)2 ), and 1. The skills 21, 22, and z3 occupy the
states x1, xo, and x3, respectively.

Let N(¢(824)2,0) = N(1,0) and N (¢(82.¢)2,0) =N (% ZtT, exp (—%) ,5) be two
probability distributions. Then

Jim Dt N0(5200) | i N (520200 4 1 3 A(w(52.20

2 €Z,2'#x=
=L S D (N5, ) | o N (50)018) + E N (52 0), )
— |Z|_1Z,6Z’Z,¢Z KL z,t)z» |Z| z,t)z |Z| z,t)z"y

1 T
T T(z]- 1) 2 2

Z'eZ,2F#z t

Drcr, (/\/(1,6) I %/\/’(1,5) + |Z||Z_| Ly <exp (-W) 5))

holds.

Proof. The following is a proof that each center of a previously defined Dirichlet Gaussian Mixture
Distribution has an equal influence on the result of the KLD calculation. Define the terms «, (3, and
v as follows:

o (emom (-CSIY s (e ()Y e

Let M, N, and L be:

M = exp (—%) ,N =exp (—g) , L =exp (—%)

We aim to prove that every element of s; influences the approximation of the KLLD equally, as
demonstrated by the following limit:

S Liog () do — [ Llog (1w ) do
lim =_1
570 [ Llog (m) dx — [ Llog (ﬁ) dx
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This statement holds if the following condition is satisfied:
im log(L+ M + N) —log(L +2M) B
B>0 log(L + M + N) —log(L +2N)

To continue the proof, we consider two cases for possible values of ~.

* Case1(y < 1): Assuming v < «, 3,
. log(L+ M + N) — log(L +2M)
B—0 log(L + M + N) —log(L + 2N)

log(1 + exp (15%) + exp (TB)) log(1 + 2exp (13

“)

B
= lim (Simplification)
B—0 log(1 + exp (15%) + exp (7 5))710g(1+26xp (TB))
exp (15%) + exp (%) — 2exp (15~
= lim (by Taylor expansion)

e Case2 (v > i): Assuming 3¢ > 0, such that v — ¢ > «, 8, we have
in log(L + M + N) —log(L +2M)
B—0 log(L+ M + N) —log(L + 2N)
.. log(M + N) —log(2M) o
= élglo log(M + N) — log(2N) (Simplification)
log(exp(—ab) + exp(—pFb)) — log(2 exp(—ab))
= lim
b—oo log(exp(—ab) + exp(—pb)) — log(2 exp(—Bb))
(ot a/b) exp(—b) — (B+ BB exp(~B)
b—oo —(a + a'b) exp(—ab) + (8 + 5'b) exp(—abd)
= blim —exp((a — B)b)
—00

(I’Hopital’s rule)

=l @B (Change of vasiabl
= BILHO exp I (Change of variable)

=-1

The last equality holds as
] (875”)2 (S—S')2 B
élglo <exp ( B exp 5 /B =0.

Lemma B.2. (Natural component disengagement) During the computation of the KLD between
a single Gaussian distribution and a mixture of Gaussian distributions, if the variance of gaussian
distribution 0 is small enough, the influence of the dominant Gaussian component in the mixture
becomes overwhelmingly large compared to other, leading to a cancellation of the first term on the

right side of the divergence equation:
. -1
lim Drr(N(¥B(s:4)=,0) || ?N(wB(Sz,t)za 6) + TN(wB(sz,t)z/,é))

=DrrWN(¥B(5:2.4)20) | N(¥B(52,t),9))

O

1 K

Proof. Let M = exp (—%) and N = exp (—M) be two functions of z. Now,

consider the limit:
. -1
JggloDKL(/\/(wB(sz t)z:0) || }N(wB(sz t)z,0) + TNW)B(SZ,t)z/v 9))

=Dgr(N(@5( S2,4)zs )HN(z/}B(SZ t)z:0))

1 K
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This is proportional to:

M 1+€
b—roo zM + =N boeo ZzM + ==N
14+e€ M
=1 M log —
b0 l—e BN

where the last equaliti holds, as for all z € (1 — €, 1 + €), we have:

lim — (exp(—ab) —z)°6 = — (2)*6 < —(1 — z)?%4.

b—oco

Since the simplified quantity is proportional to

Drr(¥B(s:6)z [|¥B(52,¢)2)-

we conclude the proof.
O

Lemma B.3. (Natural gradient vanishing) As the squared distance between two states s and s'
approaches infinity, the derivative of the KL divergence between their associated Gaussian distribu-
tions approaches zero, thereby rendering its influence negligible. Mathematically,

. d (x—
D VL B) [ Vel

Proof. The derivative of the KL divergence with respect to =’ is given by:

A D1, B) | Mexp(~ T2, )

R

(v —a')?

d
- <((2x' — 22)/B) exp (B> +(=2(22" — 22)/B) exp (m;f)z» /(2B)

=exp (—(z —2')?/B) (1 + 2exp (—(z — 2)?/B)) (z — 2’)/B?
By taking the limit,
lim  exp(—(z—2)?/B) (z—2')/B*=0
(z—z')2—00
we conclude the proof. O

Theorem B.3. (Branching) If the distance between two skills, each occupying a distinct point,
exceeds a certain threshold, another skill can be inserted between them such that the information
gain of the added skill begins to maximize at the midpoint illustrated in Figure 4. This threshold A
can be defined as B as follows:

_ A &2
Given x = S P ZIg[EZ[I(wB(S ={0,2,2}).;2).] =0

when B = \2.
Proof. The second derivative of the equation for information gain with respect to x can be expressed
separately as follows:

d2

=5~ (DN (¥5(2),0) | N(5(N),0) + D (N (¢5(2),8) | N(¢5(0)),6)) = 0

d2x
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The concave region of information gain begins at the midpoint between two states. Therefore, we
will determine whether the function is concave or convex when z is % and identify the transition
condition when it switches from convex to concave.

% (DN (¥B(x),0) | N(¥B(N)),6) + DN (¥p(2),0) | N(45(0)),9))
d ((1—exp(=2*/B))* (1 —exp(=(\—2)*/B))*
™ ( 5 * 5 )
= 5 (o2 — 2o +exp(- 22T - AT )
—4x 222 4x 22
= B exp( g) T 5 eXP(‘E)
—4(x —A) (_2(/\ —x)% Az —)) exp( (A= $)2)
Bo B By PR

= —ren(- 2 tren(-5) — @~ Ve 22 ¢y e A

2 (~rewt-20) +vep- D) — o - Mew- 22T 1 oy enp- 22T )
_exp(_%) +exp(_%§) _exp(_2(w; P 4 exp(= ;)2)

+x (4; eXp(—%) - %x exp(_“;))

— 4 (z—\) (4(xB A) exp(—Q(x;)\)Q) B 2(:1;]; A) exp(— (x ;3,\)2))

After deleting constant terms:

A2 2\ A2 2\
- Qexp(fﬁ) +2+ A (B exp(fﬁ) - B) = 0 when B = \°.

The influence of states further than this nearest state decreases exponentially as the dimension band-
width reduces, according to Lemma B.3. O

Lemma B.4. (Inequality in Kullback-Leibler divergence(KLD) for low-variance Gaussian Mix-
ture Models) Assume two arbitrary Gaussian mixture models My and My comprising low-variance
components, and My, My the number of modes in the Gaussian mixture distribution. As o — 0, the
models can be expressed as:

| M
_ A2
My = i, ;:1./\/(/11,0 )

1 &
My = E;N(Vﬁaz)
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where j1; and v; are the means of the Gaussian components in M, and My respectively.

Furthermore, the KLD between these models is bounded as follows:

My, Mo
1
Drr(Mi|M2) < SYATA ;;DKL(N(M’02)\|N(Vj702))-

Proof. Consider three Gaussian distributions:
Px :=N(a,0%), Py :=N(B,0%), Pz:=N(v,0%)

As o approaches zero, the KLD is predominantly defined by the values near the local maxima of the
first term. The divergence can be expressed by the following integrals:

oo _ 2 _ 2
lim (exp <_(x2a)) + exp (—W))
o—=0 J_ o o
2 2
exp (,L;g‘) ) + exp (77(30;5) )

2 exp (_7(%;;)2 )

-log

c.the limitas o — 0, 2D, (P X ;P Y HPZ) equals the sum of the divergences of Py and Px from
le
lim (D (Py[|Pz) + Dicr(Px || Pz)]

Given positive constants A, B, and C such that A, B, C' > 0, we consider the following logarithmic
inequalities:

A+ B
2log i > log A + log B,

A+ B
2log C — 2log + < 2log C — (log A + log B),
C C C
These inequalities are derived from the concavity of the logarithmic function and are used to demon-
strate the following inequality involving KLD for any probability distribution P:

Px + P,

Using the following foundational results:
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* The limit of twice the KLD for a bimodal Gaussian distribution as o — 0 equals the sum
of the divergences of each component from a reference model Py:
Px + Py

. ;iE%QDKL< : ||PZ)= tim [Dics (P |1P2) + Do (P | P2)]

* The KLD for any distribution P with respect to the midpoint of distributions Px and Py
is bounded by the sum of the divergences to each distribution:

Px+PY>

9Dy (pn < Di1(P||Px) + Di(P|| Py)

We can derive an inequality for Gaussian mixture models as follows:

Ml,i :N(M’hag)? MQ,j :N(Ujﬂa—Q)
1 | M| 1 [Ma|

|M1| ZN(MiaU2)7 MQ = |M2‘ ZN(Vj702)
i=1 j=1

My =

where 0 — 0, and where y; and v; are the means of the Gaussian components in M; and M;,
respectively.

The KLD between these models is bounded by the average of the pairwise divergences between
individual components:
1 | My | | M|

DKL(M1HM2) | ‘M2| Z Z DKL Ml z”MZ ])

=1 j=1

First, we can derive the performance bound from the definition as follows:

Lemma B.5. (Performance bound among optimal skills)Let z,z' € Z with z # 2/, policy space
O. The Jy(z) is upper bounded by

T
ZZdSznsz t’ 2

t=1t'=1

|J9(Z) ( ‘ < Rupax

DN =

Proof. The following derivation shows how the upper bound for the average difference of perfor-
mance between two policies indexed as z and z’ can be computed. This upper limit is influenced by
the total variation and KLD between the policies’ distributions over states.

o(2) — Jo(=")] < Eumsllieo(s)OL(s) — par(5)OL (8] )
< (TRu) /S lis0(5) — par(s)lds ®)
< (TR \/ %DKL(uz,e(s) lizr0(s)) (b Pinsker’s Inequality) ©)

T
< (T Runax) Z N(z|s.+,C - E)|N(z|s2 4,C - E))  (10)

52 B2 Sz t’)2

< (T Riax) 2T2 Z (11

Inequality (7) directly cames out from the definition of J, inequality (8) cames from the definition of
Ry a2z, (10) derived (by Lemma B.4), (11) derived from the definition of kld between single gaussian
distributions O
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Theorem B.4. (B-optimality) It is always possible to identify a policy within our optimal policy set
such that the performance difference between existing policy and any another optimal policy is less
than the maximum performance differences observed among our policies:

B
|Jg(2) = Jo=(2)| < T Rpax - =
Proof.

[To(2) = max Jor (2)] < |Jo(2) = Jo(=)] 12)
< (TR Z Z SZ RA) sz’ t’ (13)
— de 2T2

B

= (TRmax) YTok (14)

By applying Theorem 4.1 for (12), applying Lemma B.5 for (13), applying Theorem 4.3 for (14),
we conclude the proof. O

B.3 PROOFS IN SECTION 4.4

Theorem B.5. (Operationalization) The quantification of information gain for each skill within its
respective dimension was accomplished by calculating the KLD between a single Gaussian distri-
bution and a Gaussian mixture distribution. This calculation can be effectively approximated by the
following expression:

I(¥5(S) XTINW(SNN > (“eXP(‘(S_J;Z’t)Q))Q

SENknn(52,t)
In this analysis, Ny, represents the set of nearest neighbors considered in the computation.

Proof. from the definition,

I(’L/}B(S)Z;Z)z = DKL( E [N(wB(sz,t)zaé)m E [ E [N(’(/}B(Sz’,t’)mé)]])

teT zeZteT

Using the facts
N (52002 0) = N(1,8), N((s52,0)2,8) = N (% Lpepexp (- L2520 5)

The objective Function of proposed method is given by

sz’t/_sth
Drer [ N1, ‘””m (1,5>+% 3 ;ZNG,Zexp((va)),a)

2/ €Z,2'#2 teT t'eT’

Applying Lemmas 4.1, 4.2, we approximate the KL divergence in the limit as B approaches zero:

e 7 Z E |\ Dxu (N(L,0) |V | exp —w s
teT |Z| T t'eT! ) B ;

The KL divergence between two Gaussian distributions is expressed as follows:

(a—b)*

DKL(-N'(aaB)HN(b?B» = 2B
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Thus, Applying Lemma 4.3, the formula representing the information gain for the skill z is:

T 1— . (S,Sz,t)2 2
1 Z 1 Z (I —exp(=~—5*))
T 2 [N (5:0)] 2B '

SENRnn(52,¢)
Since all skills are divided by the same constant 2B, we conclude the proof by eliminating this term

O
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C DETAILED ANALYSIS IN EXPERIMENT

C.1 EXPERIMENTAL SETTING

We employed the policy gradient method to operate within a continuous state and action environ-
ment. Each skill was initiated from a central point and allowed to move in random directions. A
two-layered single Multi-Layer Perceptron (MLP) was used. As we trained 32 skills, we encoded
the index of each skill using a 5-digit array composed of -1 or 1, reflecting that 2° = 32 For interpo-
lation, we paired the two closest skills and divided their indices by 20. For example, if the indices of
the two closest policies were (—1,1,1,—1,1) and (—1,1,1,1, —1), the result of the interpolation
would be (—-1,1,1,-0.9,0.9) ---(—1,1,1,0.9,—0.9). The input tensor is a concatenation of the
batched indices and the batched state. The scalar value of the action ranges from [0, 1], with no
constraints on the direction.

C.2 ENVIRONMENT DESCRIPTION

20 20
Low

18 ‘\ ntropy -

AN - AN /
10 LJ‘V':,' / 10 N
5 \‘ "’L 5 p . /

Entropy

/
g Distance /’ B\ A
0 Trade off 0 %
\
-5 -5
ftropy

shorter
distance

—20 -20
-20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20

Figure 8: [Left] Illustration of the points generating mechanism, which serves as the center of each
friction zone. The distance d is selected from the negative binomial distribution d ~ NB(r, p) where
r = 2, p = 0.1. Constraint: d; > 2 and the mean of each center m; satisfying |m, — mj| >

di%d". [Mid] We intentionally created trade-off scenarios in the design of our algorithm. [Right]
Our algorithm tries to find the optimal path while congregating the policies as much as they need,
whereas the existing algorithm tends to select shorter distances in its attempt to maximize entropy,

which consequently results in a decrease in optimality.

When generating the map environment, our goal was not to impose barriers that restrict movement
but rather to allow the agent to autonomously select actions to find the optimal path. Analogous to
how movement is typically slower in mountainous areas and faster on flat terrain, we crafted a 2D
map featuring regions that decelerate movement. These slower regions were defined around sampled

points, with friction values assigned using the function exp ( 3 ) where d denotes the distance
from the center of each region and £ represents the variance.

the Coefficient Of Friction(COF) can be expressed as below:

(Zexp( )-l—Zexp( mz§_m)2>>

The resulting action is then adjusted based on the COF as follows:

COF
final action = (1 — T) X action

As demonstrated in Figure 8, our approach aimed to establish a trade-off between entropy and dis-
tance. Contrary to previous information gain-based skill discovery studies that inherently linked
increases in entropy to corresponding increases in distance, Our research indicates that the algo-
rithm is capable of finding novel states, even in the context of decreasing entropy
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Path to optimize
\*. Objective function

Figure 9: We have defined a set of objective functions consistant to prior definition, O = {O |
O : S — R} and each of objective functions are defined as O,(x) = |z - a,| — |z x a.|%
where x denotes the location of the state and «, denotes the angle of zth objective function. we
selected the z most distinct ones to satisfies the separating objective function set. We then chose
z policies that maximize the given z objective function from the policy set which were initially
trained to maximize (,. During training, the policies operated probabilistically, but for simplification
in rendering, the policies were made to operate deterministically, resulting the value of  to 1 in
formula (5). This resulted in only the final state of the trajectory influencing the performance, with
the effectiveness of each policy determined by how well the position of the last state maximized the
objective function. the terminate state conducted from our model is illustrated as Feasible set in this
figure, mathmetically fomulated as Constraint |z, | < M («), where |z,,| denotes the distance from
the origin with respect to angle o and M («) means the maximal distance generated my our model
with respect to the angle o.

C.3 EVALUATION METRIC

We estimated the HyperVolume (Zitzler & Thiele, 1999) in the Figure 6 using the following for-
mula. We calculated d; as the maximum distance achieved by our policy, which was selected based
on the mechanism described in Figure 9.

n

Z dmod(i,n) : dmod(i-{-l,n) : Sin(|wmod(i,n) - Wmod(i+1,n)|)-
i=1
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C.4 ADDITIONAL RESULTS

Simplified cIC

Large CB
cB

Original

result ’ .

Interpolated

Best policies

Ve
[
.

Figure 10: The figures describe the process of measuring performance. The top row shows the
results after initially training with 32 skills. The middle row depicts the interpolation process, which
involves rendering by dividing the index between the two nearest skills into 20 segments. The
bottom row illustrates the selection of policies that maximize a given set of 33 different Separating
Objective Function Sets, based on these results.

Figure 10 provides a detailed description of our perfor-

mance measurement approach. In practice, when utiliz-

ing multi-skill reinforcement learning, we extend beyond

the trained policy. We employ a gradient-based method

to identify and implement a policy that optimally adjusts

to the specified object. Moreover, in techniques like CIC

and DADS, the focus is on exploring the most distant ar- a

eas, which results in an average path length that exceeds

our method. However, the substantial number of still un-

explored areas necessitates this approach to accurately as-

sess performance. The objective function used for train- /

ing the large CB is given by £
E [I(¢5(5); 2)-];

z€Z

training time [0 R S

Figure 11: This is a TensorBoard

and the objective function used for training the simplified screenshot showing the time per epoch
CB, which is result of Theorem (Contrastive space de- required to train the above five models.

composition) is The model that took the longest time is
the large CB, followed by CIC, DADS,
E U(45(85)252):). Simplified CB, and DIAYN in that or-

der.

As illustrated in Figure 11, while the actual outcomes of

the Large CB and Simplified CB are identical, a variance in training speed is evident. The reason for
this discrepancy lies in the structure of the large CB; as the number of skills | Z| increases, so too does
the quantity of features per skill, necessitating the calculation of distances between features across
all skill pairs. This results in a time complexity that escalates proportionally to |Z|?. Conversely,
the simplified CB merely requires the computation of rewards pertinent to the dimensions engaged
by the updated skill, leading to a time complexity that grows with | Z|2, which is analogous to that
of the entropy bonus term in CIC.
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@M ®)
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Figure 12: Six maps were generated using the specified map generation mechanism and trained
with both CIC and CB algorithms. For each training iteration, 32 skills were randomly sampled
from a 2D continuous skill space. The k-nearest neighbors (k-NN) parameter was set to 100 for
both algorithms. The two bottom rows contain a total of 12 line graphs, with the horizontal axes
displayed on a logarithmic scale to illustrate iterations.

Improvement case(a) case(b) case(c) case(d) case(e) case(f) Average
Volume 14.5% 34.3% 18.1% 6.9% 15.8% 2.7% 15.4%
Distance 18.8% 8.6% 20.1% 9.0% 8.7% 22.0% 14.5%

Table 1: Illustration of the enhanced performance of CB compared to CIC.

The original paper on CIC does not fix the indices of the policies to be trained; instead, it selects
them randomly at each iteration. However, when using this method in CIC, if the indices are high-
dimensional, the results are not accurate. Therefore, we opted to randomly sample the indices as
two-dimensional unit vectors. Our simplified concept block also follows this approach, sampling
the indices randomly during training (refer to Figure 12). While CIC still struggled to effectively
explore the space behind obstacles, our model ultimately showed a performance improvement of
approximately 15% (refer to Table 1).
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C.5 A COMPREHENSIVE ANALYSIS OF VARIATIONS IN EXPERIMENTAL TECHNIQUES

MI Form Objective Algorithm
Backward aH(z) — BH(z|s) VIC (Gregor & Danilo Jimenez Rezende, 2016)
Backward —H(z|s) + H(alz, s) DIAYN (Eysenbach et al., 2019)
Backward —H(z|s)+ H(alz,s) VALOR (Achiam et al., 2018)
Backward aH(z) — fH(z|s) VISR (Hansen et al., 2020)
Forward H(s) — H(s|z) DADS (Sharma et al., 2020)
Forward —H(s|z) EDL (Campos et al., 2020)
Forward H (e (5)) APT (Liu & Abbeel, 2021b)
Forward aH (vg(s)) — BH(w(s]2)) APS (Liu & Abbeel, 2021a)
Forward aH (g(s)) — BH (¢g(s]2)) CIC (Laskin et al., 2022)
Integrated Dy (¢ (s|2)||1¥=(s) CB (Our Model)

Table 2: Classification of existing algorithms based on their Mutual Information (MI) form and ob-
jective functions. "Forward’ approximates I(S; Z) = H(Z) — H(Z|S), while "Backward’ approx-
imates I(S; Z) = H(S) — H(S|Z). The terms « and (3 signify that the respective terms originate
from distinct algorithms. In the proposed framework, 1)y is defined as the parametric embedding,
and v, as the nonparametric embedding, which utilizes individual skills as variables.

We have carefully considered that distinguishing skills is not solely about reaching a new state by in-
creasing entropy; instead, it sometimes requires organizing skills while reducing entropy. The most
significant distinction between our method and those previously established lies in our approach to
updating skills. While prior methods maintained a consistent state embedding, viewing the state
from a unified perspective regardless of which skill was planned to be updated, our method intro-
duces a novel approach by distorting the space uniquely from the perspective of each skill during
updates. Our approach can be viewed as utilizing a nonparametric method that incorporates skill as
a dimension. A comparison between previous algorithms and our algorithm is presented in Table 2.

Ultimately, our method allows the skills not merely to separate but to coalesce and share reusable
patterns autonomously. Therefore, our method leads to reduction in the hypothesis space, providing
enhanced optimization.
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D ADDITIONAL PLOTS

Figure 13: This graph represents the results of generating multiple maps using the method depicted
in 8, and subsequently training the concept blocks accordingly.
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E THE ULTIMATE SIGNIFICANCE OF THIS STUDY

When we engage in the learning process, we often try to fit new information into our existing frame-
works of language and cognition. This approach leads us to incorporate even slightly different
patterns into familiar structures, sometimes missing out on alternative perspectives that language
alone cannot capture. As knowledge grows and becomes more complex, the gaps between different
pieces of knowledge widen, making it harder to see how these pieces connect within our cognitive
frameworks. This complexity can make it difficult to evaluate how effectively we are learning.

In response to these challenges, we break down knowledge to explore new areas, allowing for a nat-
ural optimization of knowledge through diversification. Our research demonstrates this approach,
highlighting the human tendency to learn and adapt. Additionally, in the field of mathematical
theorem proving, increasing problem complexity makes us more aware of the limits of our current
knowledge systems. This awareness can prevent us from confirming the accuracy of our conclusions.
At the edge of cognitive exploration, we narrow down the scope of our study to refine and segment
established knowledge, leading to new theories and hypotheses that improve optimization and fa-
cilitate successful theorem proving. This model not only illustrates how curiosity drives knowledge
optimization but also marks the beginning of an artificial intelligence capable of independently de-
termining what is correct and what is not.

30



	Introduction
	Related Work
	Preliminaries
	Contrastive Space
	Performance Measurement in Markov Decision Processes

	Concept Block
	Covering Optimal Policy Space with Minimal Hypothesis Space
	Convex optimization and Information Gain 
	An intuitive examination and Performance Guarantee
	Overall Mechanism

	Result and Discussion
	Prior Research
	Proofs
	Proofs in Section 4.1
	Proofs in Section 4.3
	Proofs in Section 4.4

	Detailed Analysis in Experiment
	Experimental Setting
	Environment Description
	Evaluation Metric
	Additional Results
	A Comprehensive Analysis of Variations in Experimental Techniques 

	Additional plots
	The Ultimate Significance of This Study

